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This paper is devoted to a molecular description of the deformation of amorphous isotropic poly(ethylene 
terephthalate) (PET) films at temperatures slightly above the glass transition temperature under constant 
load. The deformation is qualitatively described by chain relaxation phenomena occurring before 
stress-induced crystallization, which are followed by the equilibration of a rubber-like network. The junction 
points include both trapped entanglements and crystalline units. The structure of this network is 
characterized by the number of segments between crosslinks. This parameter is calculated by comparing 
the predictions of the rubber elasticity theory (without Gaussian approximation) with the experimentally 
observed draw ratios under given conditions of temperatures and loads. It is shown that light loads induce 
soft networks leading to high draw ratios. The predictions of the molecular orientation derived from this 
treatment are in good agreement with birefringence data on a large variety of samples. 
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I N T R O D U C T I O N  
In the conventional fiat-film processing of poly(ethylene 
terephthalate) (PET), the molten film extruded from a 
flat die is first quenched on a cold roll, leading to an 
amorphous supercooled melt. It is then stretched at 
temperatures close to the glass transition temperature, 
Tg, under a constant drawing force between rolls 
having differential tangential speeds. Subsequent steps 
involve a transverse stretching followed by thermosetting 
treatment at high temperatures. In order to accurately 
study the longitudinal stretching process, a laboratory- 
scale set-up, able to reproduce constant-load stretching 
under well-defined experimental conditions, has been 
designed 1'2, The kinetics of deformation, and the 
structure and orientation properties of the films have 
been detailed previously 1-6. 

The aim of this paper is to analyse the mechanical 
response and the optical anisotropy of the material 
using a molecular deformation model. This paper is 
divided into four parts. In the first part, the basic 
features of the deformation process are recalled and a 
qualitative interpretation is proposed. The second part 
is devoted to the mechanical analysis of the deformation 
process using the classic rubber-like elasticity of a 
trapped network. In the third part, the build-up of 
the trapped network and its resulting structure are 
interpreted in the context of the Doi-Edwards model. 
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Finally, the model predictions are compared with 
experimental data. 

DESCRIPTION OF THE D E F O R M A T I O N  
PROCESS 

As amorphous PET film is subjected to drawing under 
constant engineering stress, at temperatures slightly 
above Tg, the deformation is characterized by the 
following features, which are outlined in Figure 11"2 . 

(1) The deformation starts slowly and the rate of 
deformation, defined as ~ =(1/Ls)(dLJdt) (where Ls is 
the length of the sample), increases with time until it 
reaches a maximum. The deformation kinetics then 
slow down and the draw ratio reaches a constant 
value (plateau draw ratio, 2p). 

(2) The kinetics of deformation increase with the 
applied stress and the stretching temperature. For  
example, for an engineering stress of 4 MPa and 
for conventional PET (Mw=40000gmol - t ) ,  the 
maximum rate of deformation is on the order of 
0.1s -1 at 80°C and 20s -1 at 97°C. Under these 
conditions, typical stretching times to reach the 
plateau draw ratio are 15 s at 80°C and 0.3 s at 97°C. 
For an engineering stress of 2 MPa, the maximum 
rate is around 10 -2 s -1 at 80°C and 5 s -1 at 97°C. 

The variation of the plateau draw ratio with temperature 
and load, depicted in Figure 2, is more complex. At any 
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Figure 1 Draw ratio v e r s u s  time during constant-load stretching at 
80°C with various engineering stresses. (Data from references 1 and 2) 
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Figure 2 Plateau draw ratio v e r s u s  applied engineering stress at 80°C 
(0 )  and 97°C (O). (Data from references 1 and 2) 

temperature a minimum plateau draw ratio is observed 
for an applied stress of 2.5 MPa. For stresses higher than 
2.5 MPa the plateau draw ratio increases, whereas for 
lower stresses the plateau draw ratio increases if the stress 
decreases. At very low stresses (0.6 MPa), large values of 
the plateau draw ratio (such as 2p = 9) can be obtained, 
even at low temperatures (80°C). 

The fact that the rate of deformation goes through 
a maximum has been attributed to the onset of 
crystallization induced by the molecular orientation. 
Owing to crystallization, a physical network builds 
up in the material, the crystallites preventing long- 
range motion of the chains. This network reaches an 
equilibrium deformation under the applied load, as 
shown by the existence of a plateau draw ratio. According 
to the classic description of rubber-like elasticity 7, the 
larger the applied stress, the higher the equilibrium 
deformation at a given network density. Large draw 
ratios under low stresses must be connected to low 
network densities. Therefore, the existence of two regimes 
in the stress dependence of the equilibrium draw ratio 
can be understood as follows. At large stresses, the 
expected load dependence is observed, indicating a rather 
constant network density. On the other hand, at low 
stresses the network density must be lower, so that larger 
extensions are reached. In order to quantitatively check 
this behaviour, the molecular network has to be 
characterized under our experimental conditions. This 

goal will be achieved by comparing the experimental 
relationships between applied loads and equilibrium 
draw ratios with the predictions of the theory of 
rubber-like elasticity. 

QUANTITATIVE CHARACTERIZATION OF 
THE PHYSICAL NETWORK 

In order to calculate the number of links between junction 
points at equilibrium deformation under the applied load, 
the classic rubber-like elasticity theory has been used 
without the Gaussian approximation 7. The nature of 
junction points (crystallites or trapped entanglements) 
does not play any role in our calculations, provided that 
the crystalline entities remain small with respect to the 
chain dimensions and that the change of the density 
induced by the crystalline phase is negligible, which limits 
our approach to low crystallinity samples. The error 
introduced by this assumption is small and is discussed 
in Appendix 1. 

We basically assume that the true stress at equilibrium 
is equal to the entropic stress arising from the deformation 
of the subchains between junction points. The plateau 
draw ratio, 2p, is related to the true stress, av, 
by the following expression (derived in Appendix 2, 
equation (A5)): 

=pRr 2ma, pL-'( ) (1) 
3Ms \2m,J 

where p is the polymer mass per unit volume 
(1.336x 10akgm-3), R is the gas constant, T is the 
absolute temperature, Ms is the average molecular mass 
per subchain, 2m~ is the maximum draw ratio for such 
a subchain, and L-1 is the inverse Langevin function. 
Expression (1) contains two unknown but interrelated 
quantities, M s and 2m~. The relationship between them 
(derived in Appendix 3, expression (A8)) is based on the 
conformational properties of the PET repeat unit 8. 
Therefore, if av, 2p and the stretching temperature are 
experimentally obtained, Ms or 2m~. can be computed. 

FORMATION OF A TRAPPED NETWORK 

As far as rheological properties of polymer melts are 
concerned, these materials are often described in terms 
of a non-permanent network of entanglements, on the 
basis of the elastic plateau observed in dynamic 

~mechanical experiments. The plateau modulus of PET 
has been determined as G°--3.1 MPa at 548 K, leading 
to an average molecular weight between entanglements 9 
of M=--- 1450 g mol- 1, in agreement with another 
determination 1° made directly on the PET used in this 
study, which yields M= = 1200 g mol- a. 

In order to evaluate the potential elasticity of this 
entanglement network, we use the conformational results 
of Flory s (Appendix 3) and calculate the maximum draw 
ratio 2m. X. Let us call r the projection along the drawing 
axis of the end-to-end vector of a subchain between 
entanglements in the isotropic state. )-m.x can be defined 
as: 

L 
" ~ m a x  = - -  ( 2 )  

r 

where L is the total contour length of the subchain. Using 
the results of Appendix 3, we deduce a maximum draw 
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ratio of 2m~ = 3.45, defining the limiting elasticity of the 
entanglement network assumed to act as a fixed 
network without any slipping of entanglement points. 
Experimental data, obtained on samples drawn with light 
loads in the laboratory experiment, show that much 
higher deformations can be reached. They can be 
explained by relaxation processes occurring at the 
beginning of the stretching process. 

In order to give a molecular description of these 
relaxation processes, we base our discussion on the 
Doi-Edwards model 11, which describes the relaxation of 
a melt suddenly subjected to a step strain. In the model, 
any chain is confined inside a tube resulting from 
the constraints exerted by the surrounding chains. 
After stretching, the tube is affinely deformed and 
relaxation of the chain towards the random coil isotropic 
conformation occurs. The relaxation is achieved in three 
steps, well separated in time. At short times, a Rouse 
relaxation of part of the chain between entanglements is 
observed. This process, essentially local, is characterized 
by a relaxation time, ZA, independent of the molecular 
weight of the chain. The second process is a retraction 
of the deformed chain inside its deformed tube in order 
to recover the equilibrium curvilinear monomer density. 
It is worth noting that this retraction process involves 
an increase of the average number of monomers between 
entanglements. The relaxation time, zB, scales as the 
square of the molecular weight of the chain. Finally, 
isotropic orientation of chain segments is achieved by a 
reptation motion. The time, Zc, associated with this 
process scales as the third power of the molecular weight. 

The step strain experiment, on which the theoretical 
description of the relaxation is based, is completely 
different from our deformation history. In order to 
understand how relaxation processes occur in our 
experiments, we refer to Figure 1, which shows that the 
deformation experiences very low strain rates, especially 
at the beginning of the stretching process before the onset 
of crystallization. If we define ~ as the instantaneous strain 
rate, a relaxation process with a relaxation time z will 
be effective if gz is on the order of 1 (Deborah number 
criterion). For ~z << 1, the relaxation process has sufficient 
time to occur, whereas it is frozen if ~T>>I. Our 
experiment, in contrast to constant-strain-rate tests often 
used in conventional rheometry, sweeps over a large 
domain of strain rates, so that different relaxation 
processes can be efficient during the deformation. 

The very first stages of the deformation involve the 
reptation of the chains as long as ~Zc< 1. In practice, 
at temperatures close to T~, the reptation times are very 
long (on the order of 104 s at 80°C (ref. 10)), so that this 
process only occurs at the very beginning of the stretching, 
where the increase of sample length is negligible. 
The average distance between entanglements remains 
constant during this process so that the entanglement 
network is unchanged. 

At longer times, retraction processes may occur and 
their efficiency is enhanced by an increasing deformation. 
The retraction process leads to an increase of the 
molecular weight between entanglements. As ~ increases, 
the large-scale retraction process becomes too slow to be 
efficient and the trapped subchains orientate strongly. 
When the orientation of the chain axes becomes higher 
than a critical value, induced crystallization appears 12, 
thereby trapping any large-scale motion of the chains. 
Finally, subchains trapped by crystallites will continue 

to deform (and eventually to crystallize) until their 
entropic reaction equals the applied stress. 

This qualitative description is valid whatever the 
applied load, the stretching temperature and the molecular 
weight of the polymer. It is now relatively straightforward 
to understand the variation of the plateau draw ratio 
with the applied load. As noted previously, small stresses 
lead to relatively low strain rates. Therefore, retraction 
motions may occur during a longer time, creating a looser 
network. For larger loads, the trapped network does not 
depend strongly on the applied stress since the time 
allowed for the retraction process becomes smaller and 
smaller. Moreover, retraction appears restricted to small 
deformations and is therefore less efficient in modifying 
the network. 

COMPARISON WITH EXPERIMENTS 

Model validation by birefringence data 
In order to check this approach we use the measured 

birefringence in the film plane of stretched samples, from 
which the second moment of the orientation distribution 
function of the chain axes relative to the draw direction 
can be derived ta. The second moment of the orientation 
distribution function is defined as: 

P2 =½(3 cos 2 0 - 1 )  (3) 

where 0 is the angle between the chain axis and the draw 
direction and the angle brackets denote an average over 
all the elementary units. If the polymer chains are able 
to crystallize, information on the orientation averaged 
over the amorphous and the crystalline phases is 
obtained. 

For the purpose of a P2 calculation, the real 
distribution of orientation can be replaced by a fraction, 
P2, of chains fully aligned along the draw direction and 
a fraction, (1 -  P2), of chains isotropically distributed 14. 
Although the deformation is uniaxial planar, we use the 
above decomposition, which assumes uniaxial symmetry, 
since the calculation of stress validates the uniaxial 
approximation, as checked in Appendix 2, as well as 
previous extensive measurements on samples drawn 
under similar conditions a-6. 

Since P2 represents the fraction of fully oriented 
segments, it is expected that P2 = 1 for the fully oriented 
polymer drawn at 2re=x, and P2 = 0 for the initial undrawn 
isotropic film. We assume, as a first approximation, that 
P2 is proportional to the fraction of chains drawn at 2m=~ 
inside the sample, or equivalently that: 

P2 - ~p -- 1 (4) 
2max-- 1 

in order to account for this proportionality and 
limiting conditions given above. This equation exhibits 
a relationship between the molecular orientation and the 
structure of the network which determines 2ma~. 

Since highly oriented segments will tend to crystallize 
during deformation, the contribution of the crystalline 
phase has to be taken into account and we expect the 
orientation calculated by expression (4) to reflect the 
average orientation inside the material. P2 can thus be 
calculated from a knowledge of 2m,. and compared with 
birefringence data. In order to evaluate 2~a x, we apply 
the rubber-like elasticity theory (equation (1)) using the 
experimental values of true stress and plateau draw ratio. 
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The relationship between the calculated P2 and the 
birefringence An of 22 samples, stretched under different 
stress and temperature conditions, is plotted in Figure 3. 
The birefringence An is calculated from the refractive 
indices along the principal directions of the film by: 

An=n t n2+n3 (5) 
2 

where subscript 1 is the draw direction, subscript 2 is the 
direction perpendicular to the plane of the film and 
subscript 3 is in the plane of the film, perpendicular to 
the draw direction. (The refractive indices were measured 
using an Abbe refractometer.) A linear relationship 
between P2 and the birefringence is observed. The slope, 
obtained from a least-squares regression, yields An -- 0.24P 2. 
The proportionality factor between birefringence and 
orientation (0.24) is close to the intrinsic birefringence of 
PET ~ 5-17 (An o = 0.22) expected under uniaxial symmetry. 
This agreement acts in favour of our model, despite the 
approximations involved in its derivation. 

Evolution of the network structure 
The evolution of the network characteristics as a 

function of applied stress and temperature is plotted in 
Figure 4. The mesh size of the network decreases with 
the applied stress, especially for stresses below 2.5 MPa. 
The influence of temperature is weaker but an increase 
in temperature still induces a softer network. It is 
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Figure 3 Calculated P2 versus in-plane birefringence for 22 PET 
samples (various molecular weights, temperatures and stresses). The 
slope of the line is 4.138 
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Figure 4 Calculated network mesh size M s versus engineering 
stress for a PET with M,=40000gmo1-1 for various stretching 
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entanglements in amorphous PET) 
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Figure 5 Calculated network mesh size M, versus engineering stress 
at a stretching temperature of 95°C for PET of various molecular 
weights (M, in gmol-1): O, 80000; C), 40000; O, 30000 

interesting to note that at a given stress a relatively large 
difference in the networks is observed between stretching 
temperatures of 95 and 100°C. The existence of such 
behaviour has already been observed using spectroscopic 
techniques to characterize the molecular orientation of 
drawn samples 4'5'1s. The present mechanical analysis is 
fully consistent with these previous observations. 

The influence of the molecular weight of the PET chains 
is depicted in Figure 5. For a given stress, the highest 
molecular weight PET shows the highest network density. 
This behaviour is easily explained by the fact that higher 
molecular weights imply longer relaxation times and thus 
less relaxation during the stretching process. The mesh 
size of the induced network is therefore smaller. It appears 
that even at the highest stresses and highest molecular 
weights, the mesh size is slightly higher than the 
molecular weight between entanglements. 

From Figures 4 and 5 we may conclude that the 
structure of the network is highly dependent on relaxation 
phenomena occurring at the early stages of the creep 
experiment, in agreement with the model depicted above. 

CONCLUSIONS 

Although involving rather crude approximations, a 
model based on the rubber-like elasticity theory with a 
variable number of links between junction points has 
been able to account for the mechanical behaviour of 
amorphous PET films deformed under constant load 
at temperatures slightly above the glass transition 
temperature. 

The very large deformation ratios (much larger than 
the maximum draw ratio of the entanglement network) 
obtainable under light loadings have been explained on 
the basis of relaxation processes occurring at the early 
stages of stretching, prior to the onset of stress-induced 
crystallization. Following the Doi-Edwards description 
of polymer dynamics, it is possible to identify this 
relaxation process mainly as the retraction of the chains 
inside their tubes. This description of the deformation of 
amorphous PET as a molecular network is in agreement 
with spectroscopic data obtained on samples drawn 
under similar conditions 5'1s. 

In the final state of the film, the stress-induced 
crystallization leads to the connection of all the chains 
in a macroscopic network. The equilibrium deformation 
is related to the number of 'junctions' per unit volume. 
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These 'junctions' consist of crystalline blocks formed 
during stretching as well as entanglements trapped 
between crystalline structures. 
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APPENDIX 1 

Influence of the induced crystallinity 
In our modelling of the PET film, even in the deformed 

state, we neglect the volume fraction of the crystalline 
phase and assume that the density is equal to the density 
of amorphous PET (Pam = 1.336 x 103 kg m - 3). The error 
induced by this approximation is given, assuming 
a two-phase model by: 

P -- Pare _ Z(Pcryst -- Pare) < 0.1 l 
Pam Pam 

taking Peryst = 1.457 x 103 kg m-3.  For  crystalline volume 
fractions lower than 30% (which is the case for our 
samples3), the relative error is less than 3 %. Furthermore, 
the eventual densification of the amorphous phase leads 
to a reduced mismatch. 

The morphology of the crystalline structure produced 
in this type of stretching has been analysed previously 3. 
The structure consists of rather small crystalline blocks with 
chain axes highly oriented along the draw direction. The 
size of the crystalline blocks is around 2.5 nm x 3 nm x 5 nm 
along the film normal direction, the width and the 
stretching direction, respectively. Comparing these dimen- 
sions of the unit cell (4.5 x 5.9 x 10.7A3), it appears 
that relatively few unit cells are gathered in these blocks 
(roughly five along each direction). 

APPENDIX 2 

Derivation of the expression of the stress 
Following Treloar 7, the difference of principal stresses, 

at, in a pure homogeneous strain of the most general 

type is given by: 

p R T L I 2 1 L - I  Air - 1  ~,2 r 

where p is the polymer mass per unit volume, M, is the 
molar mass of the elastic subchain, R is the gas constant, 
and T is the absolute temperature; r is the projection 
along one of the principal axes of the end-to-end distance 
of a subchain in the isotropic state, L is the subchain 
contour length, 2i is the extension ratio along principal 
axis i, and L-1  is the inverse Langevin function. 

At the maximum extension ratio, the chain is totally 
extended: 

2maxr = L (A2) 

Equation (A1) can thus be rewritten as: 

pRT ~maxr21L_ 1( 21 ~__ 22L_ 1( ,~2 "~l 
(A3) 

Under uniaxial-planar conditions, if subscript 1 is the 
draw direction and subscript 2 is the direction normal 
to the film plane, then 21 = 2 and 22 = 1/2, where 2 is the 
extension ratio. 

No stress, except the hydrostatic pressure, is acting 
along direction 2, so that the stretching stress can be 
expressed as: 

p R r  r 2 
tr = - -  2max/2L - / - - / - -  (A4) 

3Ms L \2re,x) 2 \22maxJJ 

For draw ratios 2 > 3, the second term in equation (A4) 
is almost negligible so that the expression of tr can be 
simplified as: 

p R T  11 2 \ 
~ = - -  2max2L- f - - |  (A5) 

3M, \2max,] 

This expression of the stress is the same in the uniaxial 
case. The relative error induced by this simplification is 
less than 5.5% for 2>3.  

APPENDIX 3 

Derivation Of 2ma x from conformational properties of P E T 
According to Flory 8, the PET repeat unit contains six 

flexible units, the average length of which is l=2.68 A 
for an average molecular weight of # = m o n o m e r  
mass/6-- 32 g mol -  1. 

Following the determination of Daubeny et al. 19, the 
projected length of the repeat unit in trans conformation 
along the chain axis is 10.75/~, so that the average 
projected length per flexible unit is lv=l .79A.  The 
number of flexible units between entanglements is: 

N e = Me/It = 37.5 

so that the extended length between entanglements is: 

L = 1.79Ne 

If we assume the PET subchains to follow Gaussian 
statistics, the average end-to-end distance between 
entanglements is: 

d=(NeC~ol2) 1/2 (A6) 

and d is related to r, the projection of the end-to-end 
vector along one of the principal axes of the sample, by 
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d 2= 3r 2. For PET, Co, the polymer characteristic ratio, 
has been calculated 9 as 4.2. 

As the maximum draw ratio is defined as 2m. ~ = L/r, 
one gets for 2ma~ the following expression: 

, lp [3Ne'~ 1/a 
,~m.x = 7 ~C-~-~ ) (AT) 

which relates ~'m.~ and N=, since the other quantities are 
known. In the isotropic state, the calculation yields 
2m.~= 3.45. Equation (A7) can be generalized to relate 
the maximum draw ratio to the average number of links 
between junction points Ns as: 

2m.~=~ (3Ns'] 1/2 (A8) 
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